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Maximally decimated filter banks have been extensively studied in the past. A

filter bank is said to be under-decimated if the number of channels is more than the

decimation ratio in the subbands. A maximally decimated filter bank is well known

for its application in subband coding. Another application of maximally decimated

filter banks is in block filtering. Convolution through block filtering has the advan-

tages that parallelism is increased and data are processed at a lower rate. However,

the computational complexity is comparable to that of direct convolution. More

recently, another type of filter bank convolver has been developed. In this scheme,

the convolution is performed in the subbands. Quantization and bit allocation of

subband signals are based on signal variance, as in subband coding. Consequently,

for a fixed rate, the result of convolution is more accurate than is direct convolu-

tion. This type of filter bank convolver also enjoys the advantages of block filtering,

parallelism, and a lower working rate. Nevertheless, like block filtering, there is no

computational saving.

In this article, under-decimated systems are introduced to solve the problem.

The new system is decimated only by half the number of channels. Two types

of filter banks can be used in the under-decimated system: the discrete Fourier

transform (DFT) filter banks and the cosine modulated filter banks. They are well

known for their low complexity. In both cases, the system is approximately alias

free, and the overall response is equivalent to a tunable multilevel filter. Properties

of the DFT filter banks and the cosine modulated filter banks can be exploited

to simultaneously achieve parallelism, computational saving, and a lower working

rate. Furthermore, for both systems, the implementation cost of the analysis or syn-

thesis bank is comparable to that of one prototype filter plus some lotv-complexity

modulation matrices. The individual analysis and synthesis filters have complex co-

efficients in the DFT filter banks but have real coefficients in the cosine modulated

filter banks.

I. Introduction

The M channel maximally decimated filter bank shown in Fig. 1 has been studied extensively in

[1-8]. A filter bank is said to be under-decimated if the number of channels is more than the decimation

ratio in the subbands. When the system in Fig. 1 is alias free, it is a linear time invariant system with

transfer function T(z), as indicated in Fig. 1. In the following discussion, T(z) will be called the distortion

function, or the overall response.

A maximally decimated filter bank is well known for its application in subband coding. Another
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of the synthesis bank need not be the same. To be more specific, let P0(z) be the prototype filter of

the analysis bank and Qo(z) be the prototype filter of the synthesis bank. The filters Pk(z) and Qk(z),

k = 1, 2,..., 2M - 1, are, respectively, the shifted versions of Po(z) and Qo(z).

Pk(z) :- Po(zWk), Qk(z) = Qo(zWk), k = -M, -M + 1,..., M - 1

Notice that unit circle Pk(z) is only a shift of Po(z) by k_r/M, since Pk(e j_) = Po(eJ(w-kr/M)). Figure 3

shows this relationship. The analysis filters and synthesis filters of the DFT filter bank have the following
form:

Hk(z) = akPo(zWk), and Fk(z) = a_Qo(zWk), W = e -j_/M (i)

IPo(eJ(°)l IP 1(eJe°)l IPk(eJ°_)l

-u/2M 0 _I2M r,,/M k_/M

Fig. 3. Magnitude responses of Pk (z).

(The definition of a DFT filter bank here is slightly different from the conventional DFT filter banks [7].)

It follows that Hk(e j_) is just a shift of Po(e jw) by kTc/M except for a scalar. The same holds for the

synthesis filters.

We now show that with proper design of the two prototypes, this DFT filter is approximately alias

free and the overall response is equivalent to a tunable multilevel filter. Moreover, the overall response

can be a real-coefficient linear-phase filter as desired. Efficient implementation of the DFT filter bank
will also be discussed.

A. Suppression of Aliasing Error

Consider the under-decimated system in Fig. 2, a 2M-channel filter bank with decimation ratio M.

The suppression of aliasing error due to downsampling in the subbands can be explained pictorially. Take

the first subband as an example. Because of decimation followed by expansion, there will be M - 1 image

copies of H0 (z), as shown in Fig. 4. We can see from Fig. 4 that these image copies will be suppressed

if both Ho(z) and Fo(z) have stop-band edges less than 1r/M. When the spectral supports of Fo(z) and

the image copy of Ho(z) do not overlap, the aliasing error will be suppressed to the level of the stop-band

attenuation of Ho(z) or Fo(z), which is equivalent to the stop-band attenuation of Po(z) or Qo(z). In the

other subbands, the same reasoning for aliasing suppression applies.

We now present the mathematical counterpart of the above discussion. The output X(z) is related to

the input X(z) by

M-1

X(z) = _ Ai(z)X(zW 2i) (2)
i=O

The alias transfer function, Ai(z), is defined as
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Fig. 4. Image copies of H 0 (z) due to decimation followed by expansion and the spectral support of F0 (z).

2M-1
1

A_(z) =-_ _ Hk(zW_i)Fk(z) (3)
k=O

The system in Fig. 2 is alias free if Ai(z) = 0 for i = 1, 2,..., M - 1. With analysis filters and synthesis

filters chosen as in Eq. (1), Ai(z) can be written as

2M-1
1

Ai(z) =-_ _ lak12po(zW2i+k)Qo(zW k) (4)
k=0

Assume the nonadjacent bands of Po(z) and Qo(z) do not overlap, i.e.,

Po(eJWW2i)Qo(eJ_) .._ 0, i = 1,..., M - 1 (5)

This assumption is reasonable if Po(z) and Qo(z) have stop-band edges less than _r/M and large enough

stop-band attenuation. Equation (5) gives us

Hk(zW2_)Fk(z)_O, k=0,1,...,2M-1, i=l,2,...,M-1

which implies Ai(z) _ O, i _ O. We conclude that the DFT filter bank is almost alias free. Also notice

that the degree of alias suppression improves with the stop-band attenuation of the two prototypes.

B. The Overall Response of the DFT Filter Bank

For a 2M-channel system decimated by M as shown in Fig. 2, the distortion function T(z) can be

expressed as [7]

_ 2M-1

k=0

(6)

Let Ro(z) = Po(z)Qo(z). Substitute the expression of Hk(z) and Fk(z) in Eq. (1); then

2M-1
1

T(d _) =-_ _ lakl2Ro(ej(_-k'_/M)) (7)
k-----O
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When R0(z) is a Nyquist (2M) filter, it can be shown the addition of lakl2Ro(e j(_-k_/M)) in Eq. (7) will

not result in any bumps or dips in the response of T(z) because of the Nyquist property of Ro(z). The

definition of a Nyquist filter is given in Section I. A detailed explanation can be found in [7].

With Eq. (7), we can plot a typical magnitude response of T(z), as in Fig. 5, which shows that the

overall response is equivalent to a multilevel filter. Since the value of ak can be chosen freely, T(z)

is actually a tunable multilevel filter. In particular, we can get lowpass filters with stop-band edges

adjustable in integer multiples of _r/M.

IT(eJOJ)l ao a1

/
/

Fig. 5. A typical magnitude response of T(z), a multilevel filter.

a5

Remarks:

(1) If Ro(z) is a real-coefficient filter and we choose ak = a2M-k to be some real number, k =

1, 2,..., M, it can be verified that the resulting T(z) is also real-coefficient.

(2) Let R0(z) be linear phase with order Nr, a multiple of M. In this case, R0(zW k) is linear phase.

By Eq. (7), this implies that T(z) has linear phase.

Summarizing, we have shown that if R0(z) is Nyquist (2M) and Eq. (5) is valid, the DFT filter in
Fig. 2 is nearly alias free and the overall response is equivalent to a tunable multilevel filter.

C. Implementation of the DFT Filter Bank

There exists an efficient implementation for the DFT filter bank. To see this, express the prototype

Po(z) in polyphase representation, i.e.,

2M-1

po(z)= E,(z2M)z-' (S)
i=0

where E_(z) is the ith type 1 polyphase component of Po(z) [71. The analysis filters can be rewritten as

2M-1

Hk(z) = akPo(zW k) = ak _ Ei(z2M)w-kiz -i, k = 0,1,...,2M- 1 (9)
i=0

Let

h(z) = [H0(z) Hi(z)... H2M_I(Z)] T (lo)
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The matrix representation of Eq. (9) is

° ' )a 1 ••• 0 El(Z 2M) '''

h(z) = . ". . W* • ". e2M(Z)

• " i
0 "" a2M-1 \ 0 ... E2M_ (Z TM)

(11)

Observing Eq. (11), we can draw the polyphase implementation of the analysis bank as in Fig. 6. The
implementation cost is that of the prototype filter Po(z) plus a DFT matrix. The same holds for the
synthesis bank. The computational complexity of the analysis bank is comparable to that of the analysis
prototype filter plus one DFT matrix. Notice that all the computations involved in the filter bank are
performed after the M-fold decimators; lower rate and lower complexity are achieved at the same time.

X(z)

z-1

z-1

W •

al

a2M-1

Fig. 6. Efficient implementation of the analysis bank of the 2M-channel DFT filter bank. The DFT matrix, W,
is of size 2Mx 2M.

? • i

III. Cosine Modulated Filter Banks and Application in Tunable Multilevel Filtering

In the DFT filter bank described in the previous section, the analysis and synthesis filters have complex
coefficients• If it is desirable for the individual filters to have real coefficients, then we can use the new
under-decimated cosine modulated filter bank to be discussed in this section•

The system in Fig. 2 is said to be a cosine modulated filter bank if all analysis and synthesis filters
are generated by cosine or sine modulation of one or two prototype filters• In this section, we introduce
two classes of new under-decimated cosine modulated filter banks. The systems are nearly alias free.
Aliasing error decreases as the stop-band attenuation of the prototype increases. Individual analysis and
synthesis filters have real coefficients. We can design the prototypes so that the overall response of the
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filter bank is a linear-phase multilevel filter. Furthermore, there exists efficient implementation of this

cosine modulated filter bank. The implementation cost of the analysis bank is that of the prototype filter
plus two DCT matrices (Appendix). The complexity of an M × M DCT matrix is only of the order

Mlog(M) [11]. The same holds true for the synthesis bank. Two types of filter stacking can be applied
in the new under-decimated cosine modulated fitter bank. In our discussion, a cosine modulated filter

bank will be identified as type 1 or type 2 according to the stacking of its analysis and synthesis filters.

A. Type I Cosine Modulated Filter Bank

1. Construction of the Type 1 Cosine Modulated Filter Bank. In the cosine modulated filter

bank, all analysis and synthesis filters have real coefficients. Each filter has positive and negative spectral

occupancy as opposed to single-sided spectral occupancy in the DFT filter bank. This incurs a problem
that we do not have in the DFT filter bank. Details and a proposed solution of this new problem will be
given below.

Let P0 (z) and Qo(z) be respectively the prototype filters of the analysis bank and the synthesis bank.

The definitions of Pk(z) and Qk(Z) are as in Section II. To get real-coefficient analysis and synthesis filters
from the prototypes, we can combine Pk(z) and P-k(Z):

Hk(z) = akPk(z) + a*kP_k(z), Fk(z) = bkQk(z) + b_Q_k(z), k = 1, 2,..., M - 1

Since Po(z) and PM(Z) are already real filters, we can directly choose

Hk(z) = 2akPk(z), Fk(z) = 2bkQk(z), k = 0 or M

Figure 7 shows the spectral supports of the analysis filters for the type 1 cosine modulated filter bank.

The stacking of the spectral supports of the synthesis filters is similar.

HM HM-1 H1 H0 H1 HM_ 1 HM

000 000

-_: -(M-1)x/M .-_/M 0 n/M (M-1)_./M

CO

Fig. 7. Normalized magnitude responses of the analysis filters of the type I cosine modulated filter bank.

Aliasing error due to M-fold decimation in the 0th and the Mth subband can be suppressed on the
synthesis side as we did in the DFT filter bank. The situation in the other subbands is different because

now Hk(z) and Fk(z), k = 1, 2,..., M - 1, are bandpass filters. Referring to Fig. 8, decimation by M

followed by expansion by M in the subbands will cause one image copy of Pk(z) to overlap completely
with Q-k(z), k = 1, 2,-. •, M - 1. This type of aliasing error cannot be suppressed in the synthesis bank.

Our solution to this problem is to introduce a second subsystem that has exactly the same aliasing

error to cancel the existing one. Let the second subsystem have analysis filters H_ (z) and synthesis filters
F_(z), k = 1, 2,..-, M - 1. To create the same aliasing error, the filters of the second subsystem are

required to have similar stacking as that of the first subsystem. In particular,

Hi(z) = a_Pk(z) + a'k*P_k(Z), t;_(z) = b_Qk(z) + bk Q-k(Z),'* k = l,2,...,M-1

The configuration of the analysis filters in the second subsystem is shown in Fig. 9. Notice that the
spectral occupancy of Ho(z) and HM(Z) are not covered in the second subsystem.
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Fig. 8. Type I cosine modulated filter bank: (a) image copies of Pk(Z) due to decimation followed by

expansion and (b) the spectral support of Fk(Z ).

H'M_ 1 H' 1 H' 1 H'M_ 1

000 000

-_ -( M-1)_YM .--'_M 0 7rYM (M-1)rJM _:

Fig. 9. Normalized magnitude responses of the analysis filters of the second subsystem

in the type I cosine modulated filter bank.

==.._

The setup of the new system is now complete and is shown in Fig. 10. It is a connection of two

subsystems. The first subsystem has M + 1 channels, and the second subsystem has M - 1 channels.

The whole system is under-decimated; it has 2M channels but is decimated only by M. The analysis and
synthesis filters can be summarized as follows:

+ ALIASING

TERMS

H' 1 (z) _ M M F'l(Z )

 I'H+ H+ H'IH 'M-1 (z) M M F'M_ 1 (z)

Fig. 10. The setup for the type I under-decimated cosine modulated filter bank.
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Hk(z)=2akPk(z), k = 0, M

Hk(z) = akPk(z) + a_P-k(Z),

I*

H_(z) = a_Pk(z) + ak P-k(Z),

Fk(z) = 2bkQk(z),

k = 1,2,...,M- 1

k= 1,2,...,M- 1

k =0, M

(12)

Fk(z) =bkQk(z)+b_Q-k(z), k=l,2,-..,M-1

F (z) ' '*= bkQk(z)+bkQ_k(Z), k = 1,2,...,M- 1

The values of ak, a_, bk, and b_ will be determined later.

In the following we show that with proper design of the prototypes and appropriate choices of ak, a_,
bk, and b_, this filter bank is almost alias free. The overall response of the type 1 cosine modulated filter
bank can be designed to be a linear-phase tunable multilevel filter.

2. Cancellation and Suppression of Aliasing Error. As we mentioned in the construction of

filters, the aliasing error in the 0th and the Mth subbands will be suppressed in the synthesis bank. Only
the subbands with bandpass filters require alias cancellation. The physical picture is as follows:

Consider the kth subband, 1 < k < M - 1. Due to decimation followed by expansion, Pk (z) has M - 1
image copies and P-k(Z) also has M - 1 image copies. The image copies of Pk(z) will be suppressed

by Qk(z) provided that both Po(z) and Qo(z) have stop-band edges less than 7r/M and large enough

stop-band attenuation. Of the M - 1 image copies of Pk(z), M - 2 of them are in the stop band of

Q-k(Z) and, hence, will be suppressed by Q-k(z), as depicted in Fig. 8. However, one of the image copies

of Pk(z) will fall on top of the spectral support of Q-k(z). Only this image copy requires cancellation.

In the kth subband of the second subsystem, the same aliasing occurs. It can be shown that the aliasing

error of the second subsystem cancels that of the first subsystem if the values of ak, bk, a_, and b_ are
chosen properly. Mathematical proof of this claim is as follows.

With filters constructed as in Eq. (12) and the expression of alias transfer functions in Eq. (3), we
have

1

Ai(z) : _ (A_I)(z)-F- A_2)(z)_- n_3)(z)+ n_4)(z)) (13)

where
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M-1

A_l)(z) = (hobo + a;bo) Po (zW 2i) Qo(z) + E (akbk + a_b_) Pk (zW 2i) Qk(z)
k=l

M-1

A_2)(z) = E (a_bk + a_k*btk)P-k (zW 2i) Qk(z)
k=l

M-1

A_3)(z) = E (akb_ + a_kb_*)Pk (zW2i) Q_k(z)
k=l



M-1

A_a)(z) = (aob o + aob;) Po (zW 2i) Qo(z) + E (akbk + ak k ) _'-k (zW 2i) O-k(Z)
k=l

i__ i_ i

_ _iI_I'_!I

Assume Po(z) and Qo(z) satisfy Eq. (5). It follows that A_l)(z) _ 0 and A_4)(z) _ 0. Let ak, k = 0,..., M
be real and choose

bk = ak, k = O,...,M

a_ = -jak, b_ = jak, k= l,...,M-1

(14)

If ak, bk, a_, and b_ are chosdn as above, it can be verified that akbk + '* '* ak bk = 0, which implies A_ 2) (z) =

Al3)(z) = 0. So the condition Ai(z) _ 0 is ensured, provided that Eq. (5) is valid and ak, bk, a_, and b_

are chosen according to Eq. (14).

With Eq. (14), we can write down the time domain description of the analysis and synthesis filters for
the type 1 cosine modulated filter bank. Let po(n) be the impulse response of Po(z) and qo(n) be the

impulse response of Qo(z).

hk(n) = 2akPo(n) cos (knTr/M), k = 0, 1,..., M

v

h (z) = 2akPo(n)sin (knTrlM),

fk( ) = 2 kqo(n)cos

fj (n) = 2akqo(n) sin (knTr/M),

k = 1,2,...,M- 1

k = 0,1,...,M

(15)

k = 1,2,...,M- 1

From the expression in Eq. (15), we can see that each individual filter is a sine or cosine modulation of

the prototype filters.

3. The Magnitude Response of the Overall Response T(z). Using Eqs. (12) and (6), we get

2 M

k=0

(16)

The above expression for the overall response is similar to that in the case of DFT filter bank, Eq. (7). If

Ro(z) is a Nyquist (2M) filter, this is a tunable multilevel filter bank like in a DFT filter bank.

4. The Phase of the Overall Response T(z). The overall response T(z) has linear phase provided

that Ro(z) is linear phase and Nr, the order of Ro(z), is an even multiple of M. The reason is given

below. The linear phase property of R0(z) entitles us to write

(17)

where R(w) is a real-valued function. Substitute Eq. (17) into Eq. (16) and we get
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which has linear phase when Nr is a multiple of 2M.

Notice that if Qo(z) is the time reversed version of Po(z), i.e., Qo(z) = z-gPPoo(z), then Fk(z) and

F_(z) are the time-reversed version of Hk(z) and g_(z), respectively. With this choice of Q,o(Z), the

overall response is

)z-NP
M Hk(z)Hk(z) + _ H_(z)H_(z)

k=0 k=l

In this case, the overall response has linear phase regardless of the order of Ro(z).

5. The Phase of the Individual Analysis and Synthesis Filters. Let the prototype filter Po(z)

be linear phase. If the center of symmetry of P0 (n) coincides with that of the sine or cosine functions that

modulate p0(n), then the resulting analysis filters also have linear phase. In the case of the type 1 cosine

modulated filter bank, the condition can be further reduced. It can be verified that if Np, the order of

Po(z), is a multiple of M, every analysis filter has linear phase. The same holds for the synthesis bank.

When Np is an even multiple of M, all the analysis filters in the second subsystem, H_(z), k =

1,2,..- ,M - 1, are found to have a null at zero frequency and yr. We can also verify that as Np is an odd
multiple of M, the analysis filters Hk(eJ_), k = 1, 2,.-., M - 1, have zeros at zero frequency and lr. We

conclude that some M - 1 of the 2M analysis filters have zeros at zero frequency and lr if the analysis

filters have linear phase. More on this property will be addressed when we present a similar result for the

type 2 cosine modulated filter bank.

!:

Summarizing, we have shown that the filter bank in Fig. 10 is equivalent to a linear-phase tunable

multilevel filter if the following two conditions hold: (1) The nonadjacent bands of Po(z) and Qo(z) do not

overlap, [Eq. (5)], and (2) Ro(z) is linear phase and close to a Nyq.uist (2M) filter. The implementation

cost of the analysis bank, as will be shown in the Appendix, is the prototype filter Po(z) plus two DCT

matrices. Complexity follows the buildup of the architecture; the computational cost of the analysis bank

is that of Po(z) plus two DCT matrices working at an M-fold decimated rate.

B. Type 2 Cosine Modulated Filter Bank

In Figs. 7 and 9, we show the configuration of the analysis filter for the type 1 under-decimated cosine

modulated filter bank. In the type 2 cosine modulated under-decimated filter bank, a different stacking of
filters is applied. We show the new setup in Fig. 11. The filter bank can still be conceived as a connection

of two subsystems, both with M channels. The spectral supports of the second set of analysis filters are

exactly the same as the spectral supports of the first set of analysis filters (Fig. 12). The same holds for

the synthesis bank. To be more specific, let P0 (z) and Q0 (z) be the two prototypes as before. Define

Pk(z) = Po (zW k+°'5) and Ok(z) = Qo (zWk+°'5) , W = e -j_r/M
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Fig. 11. The setup for the type 2 under-decimated cosine modulated filter bank.
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Fig. 12. Normalzed magnitude responses of the analysis filters of the type 2
cosine modulated filter bank,

Spectral support of/_k(z) is shown in Fig. 13. It is similar for 0k(z). Notice the difference between

the definition of/_k(z) and the definition of Pk(z) in the type 1 cosine modulated filter bank, Fig. 3; if the

type 1 system and the type 2 system have the same analysis prototype, then there is on the unit circle

P_(z) a shift of Pk(z) by 7r/2M, and this comes from the extra W °5 in the preceding equation.

I/_o(eJe))l I/_1(eJC°)l IPk(eJe))l

/ _' I.../ \
0 _JM 2_/M k'K/M (k+l)_/M

Fig. 13. Magnitude responses of/_k(Z),

We choose the analysis and synthesis filters, similar to the construction of the type I system, as follows:
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gk(z) = ak- k(z)+

HIk(z)=-j(akPk(z)-a_cP-k(z)),

* A

Fk(z) = bk_)k(z) + bkQ-k(z ),

k =0,1,...,M-1

k=0,1,...,M- 1

k=0,1,...,M- 1

(18)

$ A k=O, 1,...,M-1

In this case, we found that the overall response is still equivalent to a tunable multilevel fil_er, and the

argument of alias cancellation continues to hold after minor adjustments. More details are given below.
The implementation cost and the computational complexity are the same as for the type 1 system. This

can be proved in a manner similar to that used for the type 1 system in the Appendix.

1. Cancellation and Suppression of Aliasing Error. The cancellation and suppression of alias-

ing error is very similar to that of the type 1 cosine modulated filter bank. The image copies of Pk(z),

Fig. 14(a), can suppressed by Qk(z), provided that Po(z) and Qo(z) have large enough stop-band atten-

uation and their nonadjacent bands do not overlap. We can see from Fig. 14(a) that two image copies

of Pk(z) overlap with Q-k(Z). Figure 14(b) shows the resulting aliasing that cannot be suppressed by

the synthesis filters. As in the type 1 case, the second subsystem contributes another alias term, which

can be used to cancel the alias from the first subsystem. This can be verified by directly substituting the

analysis and synthesis filter in Eq. (18) into the definition of alias transfer functions in Eq. (3).

(a) ,_k(eJmw_2k_2) ' ,_k(eJo)w_2k), ,_k(eJmw_2), ,_k(eJmw2) '

O)

-(k+l )_/M -_/M 0 (k-2)rdM (k+2)_/M

^

FRoM _k\ F-l/
-(k+l)_,/M -kx/M 0 k_/M (k+l)u/M

FROM Qk

(b)

• A
-(k+ l )n/M -krJM 0

ca),

Fig. 14. Type 2 cosine modulated filter bank: (a) image copies of Pk(Z) due to decimation followed by expansion

and the spectral support of Fk(Z ) and (b) residual alias component that cannot be suppressed by Qk(Z),

2. The Magnitude Response of the Overall Response T(z). The overall response T(z) in the
type 2 cosine modulated filter bank can still be expressed in a form similar to that in the type I case.

Let Ro(z) be defined as before, that is, Ro(z) = Po(z)Qo(z). With analysis and synthesis filters chosen
as in Eq. (18), the overall response is
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T(z) = fakl2no

As in the DFT filter bank, the magnitude response of T(z) will resemble that of a multilevel filter if Ro(z)

is a Nyquist (2M) filter or close to a Nyquist (2M) filter. Again, we can tune the values of ak as desired;

the overall response is actually a tunable multilevel filter.

3. The Phase Response of the Overall Response T(z). In the type 1 cosine modulated filter

bank, the phase of T(z) is linear if Ro(z) is linear phase and Nr, the order of Ro(z), is an even multiple
of M. It is still true in the type 2 system. We can verify this by following the same steps as in the type
1 case.

4. The Phase Responses of the Individual Filters. Each analysis filter in the type 1 cosine

modulated filter bank has linear phase if Po(z) has linear phase and Np, the order of Po(z), is an even
multiple of M. The same holds for the synthesis bank. This is still true in the type 2 case. However,

the type 2 system is found to have the following two additional properties when the individuM filters are

linear-phase:

(i) The filters H_(z) and F_(z) have zeros at zero frequency, i.e., H_ (e j°) = F_ (e j°) = O.

The highpass filters H_4_i(z ) and F__i(z ) have zeros at 7r.

(ii) Either Ho(z) or Fo(z) has a bump at zero frequency and either HM-I(Z) or FM-i(z)
has a bump at 7r.

Property (i): Let Po(z) be linear phase and a0 be real. Referring to the construction of filters in

Eq. (18), the impulse responses of Hk(z) and H_(z) are, respectively, hk(n) and h_(n):

hk(n)

h_(n)

= 2a0P0(n)cos + 0.5)M)

= 2aoPo(n)sin(Tr(k + 0.5)M )

Their time reversed versions are

n Nr)hk(Np - n) = 2aopo(n) cos 7r(k + 0.5)_ - 7r(k + 0.5)-_-

( n _h (Np - n) = - 2aopo(n)sin 7r(k+ 0.5) 

For the above two filters to have linear phase, Nr is necessarily a multiple of 2M. If Nr is an even multiple

of 2M, then hk(n) = hk(Np - n) and h_(n) = -h_(Np - n). When Nr is an odd multiple of 2M, Hk(z)

becomes odd symmetric and H_(z) becomes even symmetric. Without loss generality, we can assume
that N_ is an even multiple of 2M.

Notice that an even Np, h_(n) = -h_k(Np - n) implies that H_(e j°) = H_(e j_) = 0 [7]. In particular,

the lowpass filter H_(z) has a notch at zero frequency, and the highpass filter H__l(z ) has a notch at 7r.

_::!i̧•
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The other filters, H_(z), k = 1, 2,-. -, M - 2, are all bandpass filters; zeros at zero frequency do not have

a significant effect on their shapes. The sameholds true for the synthesis bank.

In the type 1 cosine modulated filter bank, we obtained similar results. In that case, when the analysis
filters have linear phase, some M - 1 of them have zeros at zero frequency and zr. But those are all

bandpass filters; zeros at zero frequency and Ir are not of particular importance.

Property (ii): For the flatness of the passband of T(z), Ro(z) is required to be a Nyquist (2M) filter

or close to a Nyquist (2M) filter, as we have discussed previously. The Nyquist property of Ro(z) ensures
that

M-1

R (eJwWk+°'5) = c

k=-M

for some constant c. Without loss of generality, we can consider c = 1. At zero frequency, only the term

k = -1 and the term k = 0 contribute significantly, so

1 (19)

Since R0(z) is a real filter, we have

(20)

Combining Eqs. (19) and (20) leads to IR0 (e j'_/2M) ] > 0.5, i.e., [P0 (e j'_/2M) Qo (e j_/2M) I ->o.5. This in

turn implies ]Po (e j'r/2M) [ _> v/_ or [Qo (eJ_/2M) l >_ v/-O--._.Suppose IPo (eJ_/2M) [ >_ x/_. Moreover,

by the linear phase property of Po(z), we can write Po (e j_) = e-J_g'/2P(co), where P(w) is a real-valued

function. With this expression, Ho (e j°) becomes

e_JNpTr/4Mp 7r _Ho (e j°) = e -jwNp e jNvzr/4M P-_M + 2M ]

From the discussion of property (i), we know Np is an even multiple of 2M. This gives us

IN0 (eJ°) I = 21P_I > x/_
2M -

This means that Ho(z) has a bump of about 3 dB at zero frequency. If we assume IQo (e j'/2M) I >- V'-O-_,

then Fo(z) will have a bump of about 3 dB at zero frequency. The filters HM-I(z) and FM-I(z) are shifts

of Ho(z) and Fo(z) by _r; if either Ho(z) or Fo(z) has a bump at zero frequency, then either gM-l(Z) or
FM-I(z) has a bump at zero frequency.

In the above derivation, we assume ak is a real number. The readers will find that for complex ak,

properties (i) and (ii) continue to hold after minor adjustments of the above argument.

It is noteworthy that the null of H_(z) and Fg(z) at zero frequency and the bump of Ho(z) or Fo(z)
at zero frequency do not affect the overall response. The overall response is a summation of responses of

the first subsystem and the second subsystem. The bump from the first subsystem compensates for the

null of the second subsystem to ensure the flatness of the overall response T(z).
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IV. Design Procedures

We now discuss four techniques for designing Po(z) and Qo(z). The resulting Ro(z) -- Po(z)Qo(z) is

close to a Nyquist (2M) filter and, at the same time, the nonadjacent bands of Po(z) and Qo(z) do not
overlap, i.e., Po(z) and Qo(z) satisfy Eq. (5)• The prototypes Po(z) and Qo(z) designed by these methods
can be applied to both the DFT filter banks and the two classes of cosine modulated filter banks•

A. Eigenfilter Design

Th@ basic idea of this method is the following. Let P0(z) be a lowpass filter with a stop-band edge

less than _r/M. (Any lowpass filter design technique can be used for designing Po(z).) First we find

the condition for Qo(z) such that the product Ro(z) = Po(z)Qo(z) is Nyquist (2M). Then we use an
eigenfilter design and incorporate this condition to design Qo(z) [7]. The condition is derived below.

Let Nr, Np, and Nq be, respectively, the orders of R0 (z), P0 (z), and Q0 (z). Let the impulse responses

of Ro(z), Po(z), and Qo(z) be ro(n), po(n) and q0(n), respectively• Then ro(n) is the convolution ofp0(n)
and qo(n), i.e.,

Nq

ro(n) = _ po(n - m)qo(m) (21)
m=O

Given po(n), we want to constrain qo(n) so that ro(n) is a Nyquist (2M) filter• In this case, qo(n) must
satisfy

gq

po(2Mn - m)qo(m) = oh(n - no)
m=O

(22)

for some no and c. Constant c is a scalar factor; we can consider c = 1. The equivalent of Eq. (22) in
matrix form is

r = Pq (23)

where r is a ([(Np + Nq)/2M] + 1) × 1 column vector with the n0th entry equal to 1 and all others equal
to 0, P is a ([(Np + Nq)/2M] + 1) × (Nq + 1) matrix with

=_P°(2Mm-n+l), if2Mm-n+l >_O
[P]"_ [ 0, otherwise

and q = [qo(O) qo(1) ... qo(Nq)] T.

The condition in Eq. (23) can be easily incorporated in the eigenfilter approach [7].

B. A Shortcut Design

Let Po(z) be a Nyquist (2M) lowpass filter with zero phase. Let Qo(z) also be zero phase with its

passband covering Po(z) as depicted in Fig. 15, i.e., Qo(e j_) _ 1 in the passband and the transition band

of P0(eJ_). Because Ro(z) differs from Po(z) only in the stop band where the magnitude of Po(Z) is small,
we have
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Fig. 15. The passband of O0(z) covers the passband and transition band of Po(z).

R0 (z) _ P0 (z) (24)

In this case, Ro(z) will still be close to a Nyquist (2M) lowpass filter.

In the above discussion, Po(z) and Qo(z) are zero phase and, hence, noncausal. Some delays can be
added to make the filter bank causal, since both prototypes are FIR. In the two following methods, the

synthesis prototype Qo(z) is chosen as the time-reversed version of Po(z), i.e., Qo(z) = z-Nppo(z), where

Np is the order of Po(z).

C. Nonlinear Optimization of Po(z)

The filter coefficients of Po(z) can be directly optimized to minimize the stop-band energy of Po(z)

subject to the Nyquist condition in Eq. (22). The stop-band energy of Po(z) is

Tr
¢; = IPo (e j_) 12dw

(Ir/2M)-{-e

But with Qo(z) = z-Nppo(z), the right-hand side of Eq. (22) becomes a quadratic form of po(n). To
minimize ¢8, we need a nonlinear optimization package that can incorporate nonlinear constraints. The

detail of this design technique is documented in [12].

Instead of optimizing the coefficients of Po(z) with nonlinear constraints, we can use a objective

function to reflect how close Ro(z) is to a Nyquist (2M) filter. A possible objective function is

Cp Op ° (ej_)}2 + Ip ° - 1)
2dA d

Combining both ¢8 and Cp, let

¢ = aCp + (1 - a)¢8

)

where 0 < (_ < 1. The new objective function ¢ can be minimized using the usual nonlinear optimization

programs (e.g., [13]) without any constraints.

D. Kaiser Window Design

In this approach, Po(z) is a lowpass filter with an even order obtained through Kaiser window design.
That is,

po(n) - sin(wcn)w(n)
_n
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where w(n) is a Kaiser window [7]. After we choose the stop-band attenuation and the width of the
transition band, the length of the window can be estimated by a formula developed by Kaiser. In this

case, the window is completely determined [7]. The cutoff frequency wc of the ideal filter is the only free

parameter left for the design of P0 (z).

According to Eq. (22), we choose a simple objective function, CKaiser, to reflect the closeness of Ro(z)
to a Nyquist (2M) filter:

CKaiser = max [ro(2Mn) - 5(n - no)[
n

Experiments show that CKaiser is a convex function of we; we can adjust the parameter wc to find the

best Po(z), which yields the smallest CKaiser. Design examples will be given in the next section.

E. Comparison of the Four Design Methods

Of all the four approaches stated above, the shortcut design and the Kaiser window design are probably
the easiest. In the shortcut design approach, we only need to design two lowpass filters with certain

specifications described above. In the Kaiser window design, only the parameter wc needs to be optimized,

yet no nonlinear optimization is involved. Also, the value of the objective function Cgaiser at a given wc

can be computed easily.

V. Design Example

We now present one design example of the under-decimated system. The type i cosine modulated filter

bank is used in this example. The Kaiser window approach is adopted for the design of the prototype
filter.

Example 1: Tunable Multilevel Filter. The system has 20 channels. In this case, M = 10. The

analysis bank prototype filter Po(z) is linear phase with order Np = 120, stop-band attenuation 85 dB,

passband edge wp = 0.04r, and stop-band edge w8 = 0.099_r. The synthesis bank prototype Qo(z) is

chosen as the time-reversed version of Po(z). As elaborated in Section III, the resulting overall response
will have linear phase. Figure 16(a) shows the magnitude response of Po(z). The normalized magnitude

responses of the analysis filters are shown in Fig. 16(b) and (c). The synthesis filters are time-reversed

versions of the analysis filters; the magnitude responses of the synthesis filters are the same as those of

analysis filters.

After designing the prototype filters, the values of ak can be changed freely to obtain the desired

overall response, T(z). For instance, we set a0 = al -- 1, a2 = a3 -- a4 = 0, a5 -- a6 = a7 = 0.7, and
as --- a9 = al0 = 0.3. The magnitude response of the resulting T(z) is plotted in Fig. 16(b). Since T(z)

has linear phase, we did not show the phase response. The corresponding dB plot of Fig. 16(d) is shown

in Fig. 16(e).
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Fig. 16. Example: (a) the magnitude response of the prototype filter, Po(z), (b) the normalized magnitude

responses of the analysis filters in the first subsystem, (c) the normalized magnitude responses of the
analysis filters in the second subsystem, (d) the magnitude response of the overall response T(z), and (e)
the magnitude response of the overall response T(z) in a dB plot.
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Appendix

Implementation of the Type 1 Cosine Modulated Filter Bank

In this appendix, we prove that the implementation cost of the analysis bank of the type 1 cosine
modulated filter bank is that of the analysis prototype filter plus two DCT matrices.

Let

2M-1

P0(z)= E Gn(z2M)z-n
n:0

where Gn(z) is the nth type 1 polyphase component of Po(z). Then
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2M-1

Pk(z)= F_, a_ (zTM) _-_w -_'_ (A-l)
n_O

Rewriting analysis filters in Eq. (13) in terms of the polyphase components of Po(z) with ak, bk, a_, and

b_ as in Eq. (15), we obtain

2M-1

Hk(z) ----2 E akGn(z2M) z-ncos "-M n k--0,1,...,M

n=O

2M-1

H_(z) =-2 E akGn(z2M) z-nsin _kn , k=l,2,...,M-1 (A-2)
n=O

Define a 2M-component vector h(z) given by

h(z) =

Ho(z)

gM(z)
Hi(z)

H'M_I(_)j

Using Eq. (A-2), h(z) can be written as

o O)(s 
where g_(z), Ai, and Ai are diagonal matrices with

[go(Z)]kk= ak(z), [_(z)lkk= Ck+M(_),

0

gl(z2M)) f e(z)_ z-Me(z) )

k = 0,1,...,M-1

(A-3)

(A-4)

.i

[h0]kk = (--1) k, k = 0, 1,-..,M

[A_]£ = (-1)L k = 1,2,-.-,M- 1

[Ao]kk =ak, k=0,1,...,M

[A1]kk =ak, k=l,2,...,M-1

and C and S are (M + 1) x M and (M - 1) × M matrices with
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[c]_ = cos(_m_),

[s]_ = sin(_),

m--0,-..,M, n=0,...,M-1

rn=l,...,M-1, n--O,...,M-1 (A-7)

Define two M x 2M matrices

::i? • ', :

!

• :i::

4•¸--¸

:_ :.;

_ ,'2

To = (C AoC) and T1 = (S AIS)

From Eq. (A-3), we can draw Fig. A-l, a schematic implementation of the 2M channel cosine modulated

system. The input to To and T1, a(n), can be partitioned into two M × 1 vectors:

a(n)---- [a0(n) )
al (n)

Their dependence on n will be dropped for convenience. As indicated in Fig. A-l, do and dl are the

outputs of To and T1, respectively:

do = Toa and dl = Tla

From the definitions of To and T1, we know

do = Ca0 + AoCal and dl = Sao + AISal

In [14], it is pointed out that C and S have the following properties:

_--1_ E°(z2) i

X(z) z -1

El (z 2) I

. I i

 M_I,z2)I
! !

i a, 2

Fig. A-1. A schematic for the implementation of the analysis bank of the

type 1 under-decimated cosine modulated 2M-channel filter bank.

(A-8)
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A0oc(o o) (o o)JM-1 +r(1 0 ... 0) and AIS=-S JM-1

Using these relations, Eq. (A-8) becomes

0) ) ( (o o)JM-1 al + [al]o r, dl = S a 0 - JM-1 al I (A-9)

where [al]0 is the first element of al, and r = [1 - 1 ..- (--=1)M-1] T. Equation (A-9) allows us to have a

more clear idea of the implementation of To and T1. The implementation of the synthesis bank is similar
to the above.

Now we can draw a more detailed and complete picture for the implementation of the 2M channel

filter bank. For simplicity, we can choose the synthesis filters to be the time-reversed versions of the

corresponding analysis filters without the scalars ak. The efficient implementation of the filter bank is

shown in Fig. A-2. From Fig. A-2, we can see that the major complexity of the analysis bank is the cost

of the analysis prototype plus matrix C and matrix S. Matrices C and S can be implemented by fast

algorithms for DCT and DST matrices [11]. The process is similar for the synthesis bank.

i

ANALYSIS BANK ,,....-_ _ SYNTHESIS BANK

SIZE OF MATRICES:
go (z2) , gl (z2) Mx M

C (M+I) x M

S (M-l) x M

A0, A1 SQUARE MATRICES

Fig. A-2. Efficient implementation of the type I under-decimated cosine modulated 2M-channel filter bank,

where k= N-2M+ 1 ande 0= [1 0...0] T
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